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The Primal Model

yeRd

Q) min{H(y) = F(y) + G(y)} J

o F:RY = R is convex L-smooth over RY.
e G :R? — (—o0, 0] proper, closed, convex with a compact
domain.
Two widely-used methods for solving (Q):
@ Proximal gradient.

@ Generalized conditional gradient.
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Proximal Gradient

X< = prox,, ¢ (xk — thF(xk)> :

e O(1/k) rate of convergence in function values.

o faster rates of O(1/k?) are possible (e.g., FISTA [B. Teboulle
09'], accelerated methods [Nesterov, 13']). Under strong
convexity even faster - O(q¥).
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Generalized Conditional Gradient

XL =%k 4 1 (p(xF) — x9),

where

p(x¥) € argmin {(VF(xk), p) + G(p)} .
P

Idea: linearize F, keep G. Go towards the direction of the
obtained vector p(x¥).
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Generalized Conditional Gradient

XL =%k 4 1 (p(xF) — x9),

where

p(x¥) € argmin {(VF(xk), p) + G(p)} .
P

Idea: linearize F, keep G. Go towards the direction of the
obtained vector p(x¥).
o If G = d¢, GCG amounts to the conditional
gradient/Frank-Wolfe [56']. GCG was introduced in [Bach 15']
@ O(1/k) rate of convergence in function values.
@ No acceleration if objective if strongly convex. [Canon,
Cullum 68’]
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Generalized Conditional Gradient

XL =%k 4 1 (p(xF) — x9),

where

p(x¥) € argmin {(VF(xk), p) + G(p)} .
P

Idea: linearize F, keep G. Go towards the direction of the
obtained vector p(x¥).
o If G = d¢, GCG amounts to the conditional
gradient/Frank-Wolfe [56']. GCG was introduced in [Bach 15']
@ O(1/k) rate of convergence in function values.
@ No acceleration if objective if strongly convex. [Canon,
Cullum 68’]
@ Analysis depends on the optimality measure

S(y) = mgx{(VF(y)vy -p)+G(y) - G(p)}
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The Optimality Measure

S(y) = max{(VF(y),y — ) + G(y) - G(p)} J

Notation: p(y) € arg;nin {{VF(y),p) + G(p)} (CG step)

Properties:
e S(y) > 0Vy and S(y) = 0 iff y is optimal.
o H(y) — H* < S(y).

o 5(y) = (VF(y),y) + G(y) — [(VF(y),p(y)) + G(p(y))]-
predicted decrease at y by the linearized function

z— (VF(y),z) + G(z).
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predicted decrease approximation

Definition. For v > 1 and y € dom G, a vector u(y) € dom G
is a %—predicted decrease approximation (PDA) vector of H at

y if

~S(3) < (VF(§).5 ~ u(@) + 6(3) - G(u(3),

% - approximation factor

u(y) captures at least a proportion of S(¥y).

u(y) = p(¥) - 1-PDA vector.

Simple generalization of the notion of “approximate linear
oracle” with multiplicative error [Lacoste-Julien et al 13'].
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predicted decrease approximation

Definition. For v > 1 and y € dom G, a vector u(y) € dom G
is a %—predicted decrease approximation (PDA) vector of H at
g if

~S(3) < (VF(§).5 ~ u(@) + 6(3) - G(u(3),

% - approximation factor

o

@ u(y) captures at least a proportion of S(y).

o u(y) = p(¥) - 1-PDA vector.

@ Simple generalization of the notion of “approximate linear
oracle” with multiplicative error [Lacoste-Julien et al 13'].

@ The point is not that actual errors occur in the oracle
evaluation, but the notion allows to ensure additional
structure in the form of the update while maintaining
desirable convergence properties.
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Example: Block Separable G, 1-Sparse Updates

Setting:
o partition: y = (y1,¥2,...,¥m),y; € R%.
em=di+dr+...+dn.
° G(y) =>4 Gi(yi)-
Main observation in this example: Given y € R™, it is
possible to find a %—PDA vector different than y in only one
component.
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Example: Block Separable G, 1-Sparse Updates

Setting:

o partition: y = (y1,¥2,...,¥m),y; € R%.

em=d +do+...+dn.

° G(y) =>4 Gi(yi)-
Main observation in this example: Given y € R™, it is
possible to find a %—PDA vector different than y in only one
component.
e partial optimality measures:

Sily) = mpé,?X{WiF(y),y; —pi) + Gi(yi) — Gi(pi)},
pi(y) € argpmin {(ViF(y),pi) + Gi(pi)} -

Computation of a 1-sparse %—PDA vector:

e Define i € argmax S;(y).

i=1,2,....m

e u(y); =y, # i), u(y); = pi(y)-
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The 1-PDA Method

Initialization. y° € dom G.
General Step. For k=10,1,.. .,
() o Choose u(y*)- a 2-PDA vector of H at y*.
o Choose compact X* s.t. [y*, u(y¥)] € X

(ii) Perform one of the following:

1
: . gkl kK + k
prox-grad update: y prOXﬁGMXk <y LkVF(y ))
(1)
exact update: y**1 = argmin F(y) + G(y) (2)

yeXk

@ L, is chosen to satisfy

Ly
F(y 1) < F(y*) + (VF(y¥),y* ! —y*) + 5|ka+1 —y¥|1%.
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Example: Generalized Conditional Gradient [Bach, 15']

Initialization: y° € dom G.
General step (k=0,1,...):

o Compute p(y¥) € argmin {(Vf(yk),p> + G(p)}.
p

o Set y*1 = yk 4 t,(p(y¥) — y¥) where

tk € argmin H(y* + t(p(y*) — y¥)).
te[0,1]

o 1-PDA method — u(y) = p(y), X¥ = [y, u(y¥)].
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Example: Generalized Conditional Gradient [Bach, 15']

Initialization: y° € dom G.
General step (k=0,1,...):

o Compute p(y¥) € argmin {(Vf(yk),p> + G(p)}.
p

o Set y*1 = yk 4 t,(p(y¥) — y¥) where

tk € argmin H(y* + t(p(y*) — y¥)).
te[0,1]

o 1-PDA method - u(y) = p(y), X* = [y*, u(y")].
o Changing X* to X* = {y* + t(p(y*) — y¥) : t > 0}, we can
take larger stepsizes:

tyx € argmin H(yk + t(p(yk) — yk)).
t€[0,00)
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Example 2: Proximal Gradient

Initialization: y° € dom G.
General step (k=0,1,...):
@ compute
= s (- L)
[ L

o 1-PDA method.

° u(y) = p(y), X* =R*

@ constant stepsize, backtracking

@ possible extension to hybrid proximal gradient/generalized

conditional gradient
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Example 3: Greedy CD for separable problems

Setting: G(y) = >_1"; Gi(y)-
Two possible choices for X* (both contain a 1/m-PDA vector)

o= I el < T} YF Ay X (T ) X X {Tm )
“ = I x {32} x o {Frg) < dom Gy x {Frg} X x {Fim)-

X X
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Example 3: Greedy CD for separable problems

Setting: G(y) = >_1"; Gi(y)-
Two possible choices for X* (both contain a 1/m-PDA vector)

o= I el < T} YF Ay X (T ) X X {Tm )
“ = I x {32} x o {Frg) < dom Gy x {Frg} X x {Fim)-

X1 Xi

Initialization: y° € dom G.
General step (k =0,1,...):

o Compute i € argmax Si(y¥), where
i=1,2,....m

Si(y¥) = (VFi(y"),yf = pi(y*)) + Gi(yf) — Gi(pi(y¥))
with pi(y¥) € argmin{(VFi(y¥), p;) + Gi(pi)}.

Pi
o Core step: Compute y*t1
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Example 3: Greedy coordinate descent for separable

problems

The update formula of y¥*1 (“core step”) depends on X* and
the type of update rule (exact/prox-grad)
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Example 3: Greedy coordinate descent for separable

problems

The update formula of y¥*1 (“core step”) depends on X* and
the type of update rule (exact/prox-grad)

o greedy block CG (X* = X*, exact update)
Yy =y  + 6 Urpy") — v5),
where t, € argmin H (yk + tU(ps(y*) — yf‘))
0<t<1 )
o greedy block minimization (X = X*, exact update)

— K .

k+1 =i . k k I ;é ’T7

Yi € argmin { F(y* + Ui(y; — ¥¥)) + Gi(y;) : y; € dom G}, i=1.
¥i

o greedy block proximal-gradient (X* = Xk, prox-grad step)
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Example 4: Linearly Constrained Smooth Optimization

min  F(y)
st. Dy=b,
£<y<u

e DeR™9 beR™and £,u e RY satisfy £ < u.
e Fits model (Q) with G(y) = dc(y),
C={ycR?:Dy=b,£<y<u}
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Example 4: Linearly Constrained Smooth Optimization

min  F(y)
st. Dy=b,
£<y<u

e DeR™9 beR™and £,u e RY satisfy £ < u.
e Fits model (Q) with G(y) = dc(y),
C={ycR?:Dy=b,£<y<u}
Motivation
o Sparse updates: Can we find a PDA vector with an
appropriate approximation factor, different from y by only a
few components?
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Example 4: Linearly Constrained Smooth Optimization

min  F(y)
st. Dy=b,
£<y<u

e DeR™9 beR™and £,u e RY satisfy £ < u.

e Fits model (Q) with G(y) = dc(y),
C={ycR?:Dy=b,£<y<u}

Motivation

o Sparse updates: Can we find a PDA vector with an
appropriate approximation factor, different from y by only a
few components?

@ For m = 0 the answer was yes. EI%—PDA 1-sparse vector.
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Example 4: Linearly Constrained Smooth Optimization

min  F(y)
st. Dy=b,
£<y<u

e DeR™9 beR™and £,u e RY satisfy £ < u.

e Fits model (Q) with G(y) = dc(y),
C={ycR?:Dy=b,£<y<u}

Motivation

o Sparse updates: Can we find a PDA vector with an
appropriate approximation factor, different from y by only a
few components?

@ For m = 0 the answer was yes. EI%—PDA 1-sparse vector.

o A 1-PDA (m+1)-sparse update vector exists. Main Idea: LP
problems naturally have sparse optimal solutions (bfs's)

@ sparse updates: Platt [99'], Chang et al. [10’], List & Simon
[07'], Tseng & Yun [10'] - conformal realizations and review.
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The sparseDir Procedure

Input: ye C.
Output: ds(y) sat. ||ds(¥)|lo < m+1and y+ds(¥) a %—PDA vector.

(i) Set
r= p(Y) — y?
D = D diag(r),
c=ro VF(y).

(ii) Compute ¥, a bfs of the linear system s.t. (c,¥) < (c,rfor).
Dv =0,
(Lv) < |lrllo,
v>0.

(iii) If ||r|]jo = 0, set ds(¥) := 0. Otherwise set ds(y) := Wr o V.
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Example 4. PDA-Based Methods for Linearly Constrained

Smooth Minimization

@ Variety of methods based Based on the %—PDA vector
us(y) =y + ds(y).

e Construction of methods depend on the choice of (i) the sets
X¥ and (ii) the update step (exact/prox-grad).

e First two options fully exploit us(y*). The last options only
use the following support information:

Jie={itus(y)i = yr}.
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Example 4. PDA-Based Methods for Linearly Constrained

Smooth Minimization

o line segment minimization
(X¥ = [y¥, us(y¥)], exact update)

y<r = yR i (us(yF) —y5),
where tx € argmin F(yk + t(us(yk) - Yk))-
0<t<1

@ ray minimization
(XK = {y* + t(us(y¥) — y¥) : t > 0}, exact update) Same
update for y*1, t, can be as large as possible.

o block exact minimization
(Xk={y e C:y; =yk i€ J}, exact update)

y<tt € argmin{F(y) :y € C,yi = yf,i € J}.
o block projected gradient
(Xk={yeC:y,= y,k,i € Jk}, prox-grad update)

Yt = Py (y5 — £VF(¥9)).
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Sublinear Rate of Convergence

Theorem.
S (0 (S0 = 1H(y) = H])+HO )= < 25 2(H(") ~ H') + Cy
— ~ k42 k +1
@ v - approximation factor
_ l+2 —1
o C=
L - diam(dom G)?, exact minimization or
prox-grad with constant step,
max{nL, L} - diam(dom G)?, prox-grad with backtracking.
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Sublinear Rate of Convergence

Theorem.
K 2y
* k+1 _y* *
Do (S0~ MO~ H)+HOM - < 20 (R 2o - 1)+ ¢
@ v - approximation factor
_ i+2 1
° N = Srmn A€ Akt
o C=
L - diam(dom G)?, exact minimization or

prox-grad with constant step,
max{nL, L} - diam(dom G)?, prox-grad with backtracking.

Corollary.

) < 2 (200 — 1)+ €
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The Dual-Based %—PDA
Method
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The Model

(P) 5= min {f(Ax) + g(Bx)} |

A cR™" and B € R9*".
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The Model

(P) p= min {f(Ax) + g(Bx)} |

A cR™" and B € R9*",
Assumptions:

A) A has full row rank, i.e., AAT = 0.

) f:R"— RU(—00, ] is proper closed and p-strongly convex.

) & :R9 — R is closed, convex and has a Lipschitz constant L.
D) dom g™ is closed.

) One of the following holds:

(i) g is polyhedral and im(A7) N BT dom(g*) is nonempty.
(i) im(AT) N BTridom(g*) is nonempty.

Amir Beck - Technion
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The Dual Problem

g= max —f*(w)—g*(z)
(D) st. ATw+BTz=0,
weR",zcRY.
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The Dual Problem

g= max —f*(w)—g*(z)
(D) st. ATw+BTz=0,
weR",zcRY.

Properties:
o f*:R" — R convex and %—smooth.
e g*: RY9 — (o0, 00| proper closed and convex,
dom(g”) C B[O, L]
e If (E.i) is satisfied, then g* is also polyhedral and dom g* is a
polytope.
@ The feasible set

X = {(w, z):zec dom(g*), ATw+BTz= O}
is compact.

@ The optimal values, p and g, of problems (P) and (D) are
finite, attained and equal.
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Reduction of the Dual Problem

@ The dual problem (D) can be reduced to

(D7) min{f(z) = Fi(z) + Gi(2)}-

@ Problem (D’) fits the general model (Q) with

F(z) = hR(2)
G(Z) = Gl(Z)

f*(—(AAT)1ABT 2),
8" (2) + dgp.1—p)BTp=0}(2)-

where P = AT(AAT)"1A.
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Dual-Based L-PDA Method

Initialization. z° satisfying (I — P)B72z° = 0,2° € dom g*.
General Step. For k =0,1,2.. .,

(i) e Choose u(z")- a %—PDA vector of H; at z.
o Choose a compact set Z* for which [z, u(z¥)] C Z.

Amir Beck - Technion Primal and Dual Predicted Decrease Approximation Methods



Dual-Based 1-PDA Method

Initialization. z° satisfying (I — P)B72z° = 0,2° € dom g*.
General Step. For k =0,1,2.. .,
(i) e Choose u(z")- a %—PDA vector of H; at z.
o Choose a compact set Z¥ for which [z¥,u(z¥)] C Z*.

(ii) Perform one of the following:
Prox-grad update: z“** = prox. ¢ s , (2~ 1/LkVFi(2"))
k

Exact update: z¥t1 = argmin F1(z) + Gi(2)
zeZk

Amir Beck - Technion Primal and Dual Predicted Decrease Approximation Methods



Dual-Based 1-PDA Method

Initialization. z° satisfying (I — P)B72z° = 0,2° € dom g*.
General Step. For k =0,1,2...
(i) e Choose u(z")- a %—PDA vector of H; at z.
o Choose a compact set Z¥ for which [z¥,u(z¥)] C Z*.
(ii) Perform one of the following:
Prox-grad update: z“** = prox. ¢ s , (2~ 1/LkVFi(2"))
k

Exact update: z¥t1 = argmin F1(z) + Gi(2)
zeZk

(ii) Set wk = —(AAT)"1ABTz* and compute s* by either:

k
: 1 : * i
Averaging: sk = SF G2 1) E (i+2y—1)VF*(w')
i=0 i=0

Best iterate: s* = V*(wk), ko € argmin {S1(z') — Hi(2')}

i=0,1,...k

(iv) Compute x* € argmin {g(Bx) : Ax = sk}
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Main Convergence Result

Key technical result:

Lemma.

SiE)=, min  &(Bx)+ AVEW) +5°()+ Fw)

with w = —(AAT)"1AB7z.
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Main Convergence Result

Key technical result:

Lemma.

SiE)=, min  &(Bx)+ AVEW) +5°()+ Fw)

with w = —(AAT)"1AB7z.

+ convergence result for the primal PDA method =

Theorem (primal-dual convergence) z* is dual feasible, x¥ is primal
feasible and

2 2y — 2 ~
k k k+1y < v o 0y _ =
f(AX )+g(Bx*)+Hi(z“") < P < P (Hi(2") p)+4ny>

1 T2
é MLZ exact min., prox-grad with constant step,
N prox-grad, backtracking.

max {7]” AAT) 1ABT 2 }L
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Example 1: Binary Classification with Offset(SVM)

e Given. g datapoints (s;, t;), where s; € R" are the feature
vectors t; € {—1,1} are the binary outputs.

@ Objective. find a pair (x,b) € R” x R such that the
hyperplane {y € R" : (x,y) = b} will be a “good" separator
between the two types of datapoints.
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Example 1: Binary Classification with Offset(SVM)

e Given. g datapoints (s;, t;), where s; € R" are the feature
vectors t; € {—1,1} are the binary outputs.

@ Objective. find a pair (x,b) € R” x R such that the
hyperplane {y € R" : <x,y> = b} will be a “good” separator
between the two types of datapoints.

@ Model. minimize a penalized empirical risk.
min \x|| ZE ti((x,s;) — b))

o C > 0 — regularization parameter.
o /:R — R — convex Lipschitz and nonincreasing loss function.

popular choice for I: ¢(z) = max{1 — z,0} — hinge loss.
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Binary Classification Contd.
[(P) minycr {f(Ax) + g(Bx)} |

(1) miny p %HX||2+% S l(ti((x,si)—b))

(1) fits model (P) with
f(w) = %HWH2

glu)= ¢
°o A=

Problem

" (up)
In Onxl)aB = (ST —t)

—

Primal and Dual Predicted Decrease Approximation Methods
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Binary Classification Contd.

(1) ming s 3P+ S S, €t(txs)—6) | [(P) minucss (F(AX) + g(Bx)} |

Problem (1) fits model (P) with
f(w) = %HWII2
g

( )

1 (ui)
= (In nxl) B=(S" -t
Problem (D) then becomes
min 3z'STSz+ % ST, (%)
st. t'z=0.

()
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Binary Classification Contd.
[(P) minycr {f(Ax) + g(Bx)} |

(1) miny p %HX||2+% S l(ti((x,si)—b))

Problem (1) fits model (P) with
f(w) = 3|wl?
( )= 1§ Uuw)
=(In Onx1),B= (ST —t)
Problem (D) then becomes
) min 3z'STSz+ % ST, (%)
st. t'z=0.

If £ is the hinge loss function,
127STSz+ 172,

_% SZ[SO,i:1,2,.--,q
t'z=0,

min
s.t.

Primal and Dual Predicted Decrease Approximation Methods
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Binary Classification Contd.

@ can use the %—PDA method on the dual problem described
before (also amounts to a 2-CD method)

@ working set choice is done in O(q) flops (solution fractional
knapsack problem).

@ the step that is done after choosing the 2 coordinates can be
done by either exact minimization, conditional gradient,
gradient projection,

o [Hush et al. 2006'] have a O(1/v/k) rate of convergence
result for the primal sequence.
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Numerical Simulations

Setting
@ The ambient dimension is p = 20.

@ two classes sampled from unit Gaussian random variables with
a shift in mean of magnitude 2.

@ number of datapoints g € {100, 200}.
@ regularization parameter C € {10,100,1000}.
Methods
o PDA —the %—dual based method with exact minimization step.

@ WSS1 — from LIBSVM. ldentical to PDA, but with a different
index selection rule.
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Numerical Results

C: 10, g: 100 | [ C: 100, q: 100 | C: 1000, g: 100
10.0
754 600 -
504 400 -
2.5 200 -
0.0 0- 0+
| | | v y | ) . ) S S A R
= 0 20 40 60 80 0 250 500 750 0 500 1000 1500 2000 2500
= C: 10, g: 200 | [ C: 100, q: 200 C: 1000, g: 200
10.0 100- .
7.5 75- 7507
5.0 50- 5007
2.5 25 - 250
0.0 - 0- 0+
R S e S | ) ) J S S A R
0 25 50 75 100 125 O 250 750 1000 O 500 1000 1500 2000 2500

has better performance than WSS1,

help in this problem.

i
500
k

averaging doesn't seem to

method
— PDA
=== WSS1

type
Dual
Primal

— PrimalAVG
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o A. Beck, E. Pauwels and S. Sabach, " Primal and dual
predicted decrease approximation methods”, Mathematical
Programming (2017).
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